Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory
نویسندگان
چکیده
The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4–10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher 1σabs/1CO enhancement ratio, higher mass absorption efficiency (MAE; 1σabs/1PM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g−1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm) ranging from 138 to 229 nm and geometric standard deviations (σg) ranging from 1.53 to 1.89. We found MSEs for BB events to be positively correlated with the geometric mean of the aerosol size distributions (R2 = 0.73), which agrees with Mie theory. We did not find any dependence on event size distribution to transport time or fire source location.
منابع مشابه
Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol
Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale, and wildfires are a large source of emissions that impact regional air quality and global climate. As part of the Biomass Burning Observation Project (BBOP) field campaign in summer 2013, we deployed a high-resolution timeof-flight aerosol mass spectrometer (HR-AMS) coupled with a thermoden...
متن کاملParticulate Matter, Ozone, and Nitrogen Species in Aged Wildfire Plumes Observed at the Mount Bachelor Observatory
During the summer of 2012 and 2013, we measured carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), nitrogen oxides (NOx), reactive nitrogen (NOy), peroxyacetyl nitrate (PAN), aerosol scattering (σsp) and absorption, elemental and organic carbon (EC and OC), and aerosol chemistry at the Mount Bachelor Observatory (2.8 km above sea level, Oregon, US). Here we analyze 23 of the individual plu...
متن کاملCloud condensation nuclei activity of fresh primary and aged biomass burning aerosol
We quantify the hygroscopic properties of particles freshly emitted from biomass burning and after several hours of photochemical aging in a smog chamber. Values of the hygroscopicity parameter, κ , were calculated from cloud condensation nuclei (CCN) measurements of emissions from combustion of 12 biomass fuels commonly burned in North American wildfires. Prior to photochemical aging, the κ of...
متن کاملAged boreal biomass - burning aerosol size distributions from BORTAS 2011
Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number–size distributions in climate model inventories lead to unce...
متن کاملLidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)
In June 2013, a ground-based mobile lidar performed the ∼ 10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The extinction-to-back...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016